
Shortest path algorithms

Pramesh Kumar

IIT Delhi

August 18, 2025

Shortest Path

▶ Fundamental problem with numerous applications.

▶ Appears as a subproblem in many network flow algorithms.

▶ Easy to solve.

2

Shortest path problem

Definition (Path cost). The cost of a directed path π = (i1, i2, ..., ik) is

the sum of cost of its individual links, i.e., cπ =
∑k−1

i=1 ti,i+1.

Definition (Shortest Path Problem). Given G(N,A), link costs
t : A 7→ R, and origin r ∈ N , the shortest path problem (also known as
single-source shortest path problem) is to determine for every non-source
node i ∈ N\{r} a shortest cost directed path from node r.

OR

Definition (Shortest Path Problem). Given G(N,A), link costs
t : A 7→ R, and source r ∈ N , the shortest path problem is to determine
how to send 1 unit of flow as cheaply as possible from r to each node
i ∈ N\{s} in an uncapacitated network.

3

Types of shortest path (SP) problems

1. Single-source shortest path: SP from one node to all other nodes (if
exists)

1.1 with non-negative link costs.
1.2 with arbitrary link costs.

2. Single-pair shortest path SP from between one node and another
node.

3. All-pairs shortest path SP from every node to every node.

4. Various generalizations of shorest path:

– Max capacity path problem
– Max reliability path problem
– SP with turn penalties
– Resource-constraint SP problem
– and many more

4

Lemma (Subpaths of shortest path are shortest paths)
Let π = (r = i1, ..., ih = k) be a shortest path from r to k and for
1 ≤ p ≤ q ≤ k, let πpq = (ip, ..., iq) be a subpath of π from p to q.
Then, πpq is a shortest path from ip to iq.

Proof.
Decomposing path π into subpaths πrp, πpq, and πqk, so that

cπ = cπsp + cπpq + cπqk . Assume that π
′
pq be a path such that cπpq > cπ

′
pq .

Then, π
′
= πsp + π

′
pq + πqk has cost c(π

′
) = cπsp + cπ

′
pq + cπqk < cπ, which

contradicts that π is a shortest path from r to k.

5

LP formulation for a single pair shortest path

xij =

{
1 if (i, j) ∈ A is on shortest path

0 otherwise

min
x

∑
(i,j)∈A

tijxij

s.t.
∑

j∈FS(i)

xij −
∑

j∈BS(i)

xji =


1 if i = r

−1 if i = s

0 otherwise

,∀i ∈ N

1 ≥ xij ≥ 0,∀(i, j) ∈ A

Remark. We can replace xij ∈ {0, 1} with 1 ≥ xij ≥ 0 due to a property
whose discussion we are skipping here.
Let’s write its KKT conditions ...

6

Optimality conditions

Theorem
For every node j ∈ N , let l(j) denote the cost of some directed path
from source r to j. Then, l(j) represent the shortest path costs if and
only if they satisfy the following optimality conditions:

l(j) ≤ l(i) + tij ,∀(i, j) ∈ A (⋆)

Proof.
=⇒ Let l(j) represent the SP cost labels for j ∈ N . Assume that they
do not satisfy the (⋆). Then, some link (i, j) ∈ A must satisfy
l(i) > l(j) + tij . In this case, we can improve the cost of SP to node j
by coming through node i, thereby contradicting the fact that l(j)
represents the SP label of node j.

7

Proof (contd.)
⇐= Consider labels l(j) satisfying (⋆). Let (r = i1, i2..., ik = j) be any
directed path π from source r to node j. The conditions (⋆) imply that

l(j) =l(ik) ≤ l(ik−1) + tik−1ik

l(ik−1) ≤ l(ik−2) + tik−2ik−1

...

l(i2) ≤ li1 + ti1i2 = ti1i2

Adding above inequations, we get
l(j) = l(ik) ≤ tik−1ik + tik−2ik−1

+ · · ·+ ti1i2 =
∑

(i,j)∈π tij . Thus l(j) is

a LB on the cost of any directed path from r to j. Since l(j) is the cost
of some directed path from r to j, it is also an UB on the SP cost.
Therefore, l(j) is the shortest path cost from r to j.

8

Single-source shortest path

9

Assumptions

1. Network is directed
2. Link costs are integers
3. There exists a directed path from r to every other node (can be

satisfied by creating an artificial link from s to other nodes)
4. The network does not contain a negative cycle.

Remark. For a network containing a negative cycle reachable from r, the
above LP will be unbounded since we can send an infinite amount of flow
along that cycle.

Can SP contain a cycle?
1. It cannot contain negative cycles.
2. It cannot contain positive cycles since removing the cycle produces a

path with lower cost.
3. One can also remove zero weight cycle without affecting the cost of

SP. 10

Label setting and label correcting algorithms

▶ Shortest path algorithms assign tentative distance label to each node
that represents an upper bound on the cost of shortest path to that
node.

▶ Depending on how they update these labels, the algorithms can be
classified into two types:

1. Label setting
2. Label correcting

▶ Label setting algorithms make one label permanent in each iteration

▶ Label correcting algorithms keep all labels temporary until the
termination of the algorithm.

▶ Label setting algorithms are more efficient but label correcting
algorithms can be applied to more general class of problems.

11

Dijkstra’s algorithm

A label setting algorithm

1: Input: Graph G(N,A), link costs t, and source r
2: Output: Optimal cost labels l and predecessors pred
3: procedure Dijkstra(G, t, r)
4: SE = {r} ▷ Scan Eligible List
5: l(i)←∞,∀i ∈ N{r}; l(r)← 0
6: pred(i)← NA,∀i ∈ N\{r}; pred(r)← 0
7: while SE ̸= ϕ do
8: Choose a node i with minimum l(i) from SE
9: for j ∈ FS(i) do

10: if l(j) > l(i) + tij then
11: l(j)← l(i) + tij
12: pred(j)← i
13: SE ← SE ∪ {j}
14: end if
15: end for
16: end while
17: end procedure

12

Label correcting algorithm
1: Input: Graph G(N,A), costs t, and source r
2: Output: Optimal cost labels l and predecessors pred
3: procedure LabelCorrecting(G, t, r)
4: SE = {r} ▷ Scan Eligible List
5: l(i)←∞, ∀i ∈ N\{r}; l(r)← 0
6: pred(i)← NA,∀i ∈ N\{r}; pred(s)← 0
7: while SE ̸= ϕ do
8: Remove an element i from SE
9: for j ∈ FS(i) do

10: if l(j) > l(i) + tij then
11: l(j)← l(i) + tij
12: pred(j)← i
13: if j not in SE then
14: SE = SE ∪ {j}
15: end if
16: end if
17: end for
18: end while
19: end procedure

13

Single pair shortest path

14

A∗ algorithm

▶ This algorithm requires a heuristic cost h(i) of reaching destination
s from any node i. h(i) should be a lower bound on the value of
cost of reaching from i to s. In highway networks, h(i) can be taken
as the Euclidean distance between i and s divided by the highest
speed possible in the network.

▶ The Dijkstra’s algorithm can be slightly modified to convert it into
A∗ algorithm. Make the following changes in Line 8.
Choose a node i with minimum l(i) + h(i)
Stop the algorithm if i = s.

15

Shortest path in Directed Acyclic Graph (DAG)

16

Directed acyclic graphs and topological ordering

Definition (Directed acyclic graph (DAG)). A directed graph is DAG if
does not contain any directed cycle.

Definition (Topological ordering). We say that a labeling order of a
graph is topological ordering if ∀(i, j) ∈ A, we have order(i) < order(j).
A network containing directed cycle cannot be topologically ordered.

Conversely, a directed acyclic graph can be topologically ordered.

17

1: Input: Graph G(N,A)
2: Output: Topological ordering order of N
3: procedure TopologicalOrdering(G)
4: inDegree(i)← 0, ∀i ∈ N
5: order(i)← NA, ∀i ∈ N
6: count← 1
7: for (i, j)← A do
8: inDegree(j)← inDegree(j) + 1
9: end for

10: Q← {n ∈ N : inDegree(n) = 0}
11: while Q ̸= ϕ do
12: Remove ”next” node i from Q
13: order(j)← count
14: count = count+ 1
15: for j ∈ FS(i) do
16: inDegree[j]← inDegree[j]− 1
17: if inDegree[j] == 0 then
18: Q← Q ∪ {j}
19: end if
20: end for
21: end while
22: if count < |N | then
23: G has cycle(s)
24: else
25: G is acyclic and return order
26: end if
27: return order
28: end procedure

18

Shortest path in acyclic networks

Remember that we can always order nodes in acyclic networks G(N,A)
such that order(i) < order(j),∀(i, j) ∈ A in O(|A|) time.

1: Input: Graph G(N,A), costs t, and source r
2: Output: Optimal cost labels l and predecessors pred
3: procedure ShortestPathsDAG(G, t, s)
4: l(i)←∞,∀i ∈ N{r}; l(r)← 0
5: pred(i)← NA,∀i ∈ N\{s}; pred(r)← 0
6: order ← TopologicalOrdering(G)
7: for each node i in order do
8: for j ∈ FS(i) do
9: if l(j) > l(i) + tij then

10: l(j)← l(i) + tij
11: pred(j)← i
12: end if
13: end for
14: end for
15: end procedure

19

Suggested reading

1. BLU Book Chapter 2

2. AMO Chapter 4 and 5

20

Thank you!

21

