Shortest path algorithms

Pramesh Kumar

1T Delhi

August 18, 2025

Shortest Path

» Fundamental problem with numerous applications.
» Appears as a subproblem in many network flow algorithms.

> Easy to solve.

Shortest path problem

Definition (Path cost). The cost of a directed path m = (i1, i, ..., i) is

the sum of cost of its individual links, i.e., ¢™ = Zf‘;ll tiit1-

Definition (Shortest Path Problem). Given G/(N, A), link costs

t: A— R, and origin r € N, the shortest path problem (also known as
single-source shortest path problem) is to determine for every non-source
node i € N\{r} a shortest cost directed path from node 7.

OR

Definition (Shortest Path Problem). Given G(IN, A), link costs

t: A~ R, and source » € N, the shortest path problem is to determine
how to send 1 unit of flow as cheaply as possible from r to each node
1€ N\{s} in an uncapacitated network.

Types of shortest path (SP) problems

. Single-source shortest path: SP from one node to all other nodes (if
exists)

1.1 with non-negative link costs.

1.2 with arbitrary link costs.
. Single-pair shortest path SP from between one node and another
node.
. All-pairs shortest path SP from every node to every node.
. Various generalizations of shorest path:
— Max capacity path problem
— Max reliability path problem

— SP with turn penalties

— Resource-constraint SP problem
— and many more

Lemma (Subpaths of shortest path are shortest paths)
Let 7 = (r =iy,...,i5, = k) be a shortest path from r to k and for
1<p<q<k, letmy, = (ip,..,i,) be a subpath of = from p to q.
Then, ,, is a shortest path from i, to i,.

Proof.

Decomposing path 7 into subpaths 7., 7,4, and 7, so that
c¢" =" 4 ¢"Pa + Tk Assume that w;q be a path such that ¢™77 > ¢"»ra,

1 !’
Then, © = s, + T, + Tor has cost ¢™) = ™ + ¢ra + ¢Tak < ™, which
P raq q

contradicts that 7 is a shortest path from r to k. O

LP formulation for a single pair shortest path

1 if (4,5) € Ais on shortest path
s —
Y 0 otherwise

min tii i
= E ijLig

(i,j)eA
1 ifi=r
s.t. Z Tij — Z Tp=q—1 ifi=s ,VieN
JeFS(i) jeBs(i) 0 otherwise

Remark. We can replace x;; € {0,1} with 1 > 2;; > 0 due to a property
whose discussion we are skipping here.
Let’s write its KKT conditions ...

Optimality conditions

Theorem

For every node j € N, let [(j) denote the cost of some directed path
from source r to j. Then, I(j) represent the shortest path costs if and
only if they satisfy the following optimality conditions:

[16) <16) + 1:;.¥(i.j) € 4] *)

Proof.

= Let I(j) represent the SP cost labels for j € N. Assume that they
do not satisfy the (x). Then, some link (7,7) € A must satisfy

1(7) > 1(j) + t;j. In this case, we can improve the cost of SP to node j
by coming through node 7, thereby contradicting the fact that /(j)
represents the SP label of node ;.

Proof (contd.)

<= Consider labels I(j) satisfying (x). Let (r = iy,i5...,7; = j) be any
directed path 7 from source r to node j. The conditions (*) imply that

1(j) =l(ix) < U(in—1) + tip_4,
Wik—1) < Uik—2) + tip_sip s

Uiz2) < iy +tiiy = tiyiy

Adding above inequations, we get

](]) = l(”ﬁ) < tl?kfliz« + t”?kf‘zikfl +o i, = Z(zﬁj)Eﬂ t"tJ" Thus](7) is
a LB on the cost of any directed path from r to j. Since I(j) is the cost
of some directed path from r to 7, it is also an UB on the SP cost.
Therefore, [(j) is the shortest path cost from r to j. O

Single-source shortest path

Assumptions

1. Network is directed

Link costs are integers

3. There exists a directed path from r to every other node (can be
satisfied by creating an artificial link from s to other nodes)

4. The network does not contain a negative cycle.

N

Remark. For a network containing a negative cycle reachable from 7, the
above LP will be unbounded since we can send an infinite amount of flow
along that cycle.

Can SP contain a cycle?
1. It cannot contain negative cycles.
2. It cannot contain positive cycles since removing the cycle produces a
path with lower cost.
3. One can also remove zero weight cycle without affecting the cost of
SP. 10

Label setting and label correcting algorithms

Shortest path algorithms assign tentative distance label to each node
that represents an upper bound on the cost of shortest path to that
node.
Depending on how they update these labels, the algorithms can be
classified into two types:

1. Label setting

2. Label correcting
Label setting algorithms make one label permanent in each iteration

Label correcting algorithms keep all labels temporary until the
termination of the algorithm.

Label setting algorithms are more efficient but label correcting
algorithms can be applied to more general class of problems.

11

Dijkstra’s algorithm

A label setting algorithm
1: Input: Graph G(N, A), link costs t, and source
2: Output: Optimal cost labels [and predecessors pred
3: procedure DIJKSTRA(G, t,)
4 SE = {r} > Scan Eligible List
5: (i) + oo,Vi € N{r};l(r) + 0
6: pred(i) < NA,Vi € N\{r}; pred(r) < 0
7: while SE # ¢ do
8 Choose a node i with minimum (i) from SE
9 for j € F'S(i) do

10: if 1(7) >1(4) + t;; then
12: pred(j) <1

13: SE + SEU{j}

14: end if

15: end for

16: end while

17: end procedure

12

Label correcting algorithm

Input: Graph G(N, A), costs t, and source 7
: Output: Optimal cost labels | and predecessors pred
procedure LABELCORRECTING(G, t, 1)
SE ={r}
1(i) = oo0,Vie N\{r};l(r) <0
pred(i) < NA, Vi € N\{r}; pred(s) < 0
while SE # ¢ do
Remove an element i from SE
for j € F'S(i) do
if l(/) > I(L) + t;; then
1(7) < U(2) + i
pred(j) < i
if j not in SE then
SE=SEU{j}
end if
end if
end for
end while
: end procedure

> Scan Eligible List

13

Single pair shortest path

14

A* algorithm

» This algorithm requires a heuristic cost /(i) of reaching destination
s from any node i. (i) should be a lower bound on the value of
cost of reaching from i to s. In highway networks, /(i) can be taken
as the Euclidean distance between i and s divided by the highest
speed possible in the network.

» The Dijkstra's algorithm can be slightly modified to convert it into
A* algorithm. Make the following changes in Line 8.
Choose a node i with minimum [(i) + h(i)
Stop the algorithm if i = s.

15

Shortest path in Directed Acyclic Graph (DAG)

16

Directed acyclic graphs and topological ordering

Definition (Directed acyclic graph (DAG)). A directed graph is DAG if
does not contain any directed cycle.

Definition (Topological ordering). We say that a labeling order of a

graph is topological ordering if V(i,j) € A, we have order(i) < order(j).

A network containing directed cycle cannot be topologically ordered.

Conversely, a directed acyclic graph can be topologically ordered.

17

CoNO RN

Input: Graph G(N, A)
Output: Topological ordering order of N
procedure TOPOLOGICALORDERING(()
inDegree(i) + 0,Vi € N
order(i) < NA,Vi € N
count <— 1
for (i,j) < A do
inDegree(j) < inDegree(j) + 1
end for
Q < {n € N :inDegree(n) = 0}
while Q # ¢ do
Remove "next” node i from @
order(j) < count
count = count + 1
for j € ['S(i) do
inDegree[j] < inDegree[j] — 1
if inDegree[j] == 0 then
Q < QU{j}
end if
end for
end while
if count < |N| then
G has cycle(s)
else
G is acyclic and return order
end if
return order

: end procedure

18

Shortest path in acyclic networks

Remember that we can always order nodes in acyclic networks G(NV, A)
such that order(i) < order(j),V(i,j) € A in O(|A]) time.

1: Input: Graph G(N, A), costs t, and source r

2: Output: Optimal cost labels [and predecessors pred

3: procedure SHORTESTPATHSDAG(G, t,)

4: 1(i) + oo,Vi € N{r};l(r) + 0

5: pred(i) < NA,Vi € N\{s};pred(r) «+ 0
6: order < TOPOLOGICALORDERING(G)
7: for each node i in order do

8: for j € F'S(i) do

9: if [(7) >1(i) + t;; then

10: 1(j) « U(@) + ti;

11: pred(j) < i

12: end if

13: end for

14: end for

15: end procedure

19

Suggested reading

1. BLU Book Chapter 2
2. AMO Chapter 4 and 5

20

Thank you!

